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Abstract

3The relationship between program and specification is the core of
programming theory. Since both program and specification are
finite representations of infinite objects (the input-output
behavior implemented and desired), it is not surprising that the
relationship is not an effective one. Testing theory is con-
cerned with the implications of limited program executions, with
the ultimate goal of deciding a program's correctness. The dif-
ficulty at the heart of testing for correctness is that the class
of programs computing each function is not algorithmically recog-
nizable. With a functional specification, no test can distin-
guish correct programs from all others. However, this problem
can be circumvented: *l)'by requiring human assistance in select-
ing tests; t2fby strengthening specifications; or 44^y treat-
ing tests as statistical samples. Each approach has also contri-
buted useful insight to practical testing.

The primary goal of testing theory is explanation. Many test-
ing methods seem to work in practice, but there is no theoretical
reason for their good performance. Experiments to validate test-
ing methods are of doubtful validity because it is difficult to
distinguish the contributions of people and the
programming/testing process from those of the method. Too often
success in practice can be traced to an accident of human intui-
tion, in which the testing scheme is incidental. r_-
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1. Introduction

As a formal discipline, testing theory dates only from the mid-1970s. Even
program proving is older, beginning with the informal assertions advocated by
von Neumann and Turing, which were formaliked in Floyd's 1967 paper.
Programmers have always done testing, and have perhaps believed that it showed
their programs worked, but formal analysis was late in coming. Indeed. the
idea of correctness Is logically prior to any testing theory, since it is
required to define what it means for a program to work. Perhaps a reason for
disinterest in testing theory is the widespread belief expressed in Dikjstra's
aphorism, "testing can only show the presence of errors, never their absence."
When a test fails, no theoretical principles are needed to see the
implications; when tests succeed it seems equally clear that little has been
proved.

But the intuition persists that something has been proved by testing.
Programs do contain faults, and a method of finding some of them will always
be useful. Furthermore, a fault-finding method can be evaluated for how well
it pinpoints difficulties, and how often it surprises the confident programmer
who knows it will be used. The other side of the testing coin is the ability
of a test to increase confidence in the correctness of the program that passes
it. There is an unsolvable problem at the core of confidence testing, but
three distinct lines of investigation appear promising:

(I) Tests are used only as part of a creative, nonmechanical proof method.
Human beings do the work, but their task is made more natural by enlisting
the additional information of a test success.

(II) Program specifications can be strengthened so that correctness
(relative to the new, more restrictive specification) can be established
algorithmically. Conventional testing tools can be adapted to monitor
conformity to strengthened specifications.

(III) A statistical theory can establish probable correctness, within
confidence limits reflecting the number of tests conducted. Testing tools
and methods may be analyzed and compared by this technique, and it has
direct practical promise.

The process of programming and of program testing are linked by the
programmer's prior knowledge that code will be tested, and by test results
during debugging. The intimate involvement of clever, dedicated people with
program and test makes it difficult to evaluate test methods objectively.
Experiments conducted to establish or compare the efficacy of methods can be
entirely misleading, because they fail to account for human involvement in
creating and debugging the program. For example, so-called "exercise"
testing, in which test coverage of program fragments is monitored, is subject
to the "nose-rubbing effect."

Consider the simplest coverage criterion, that every statement of a program
must be used in some test. The conventional explanation for why statement-
coverage testing works is that further tests required to cover unused
statements make it more difficult for faults to go unnoticed. But this
explanation Ignores the human analysis that goes into finding additional
tests. The unexeouted statements are examined to see what they do, and this
analysis may well uncover some fault in them. Since they have not been
executed, the credit for finding this fault certainly goes to the person, not
the test method. Onoe their purpose is understood, other parts of the
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software must be analyzed to see why they have not been used, and this
requires examination of paths and predicates that might lead there. In the
process the tester looking for trouble is liable to find it, but not
necessarily trouble related to statements not executed. (Perhaps for the
omitted case that left statements unexecuted, the software works perfectly.)
"Nose rubbing" is a good name for the process of directed human error finding:
a technical expert, looking for deficiences, is forced to examine particular
parts of the code, and there (or nearby) faults are found. Code being what it
is, close study almost always finds bugs.

To validate a testing method instead of the human being using it would
require separating faults found "nearby" from those that directly cause test
deficiencies; no such study has been conducted. It might also be instructive
to conduct a reverse study, in which pure nose rubbing was evaluated: an
arbitrary pointer into the code would be printed with an obscure error
message, and people asked to fix the fault.

2.. Proving-based Testing Thory

In the proving view, the goal of testing theory is to find test ideas
equivalent to correctness, ideas to be established for a program in
noneffective ways, so that the success of a "good" test implies correctness.
The complete, reliable, and valid notions of El] are of just this kind. A
cynic might say that the difficult proof of correctness has been traded in for
an equally difficult proof of test "goodness," but this need not be so.
Success of the test is presumed, which may remove technical difficulties from
the proof E33. The basis for proving-based testing theory is the idea of
"treated the same."

Because programs and specifications are finite, there may be a division of
the input space into finitely many classes that are (or should be) "treated
the same." In that case, it is sufficient to select one element from each
class, and test success on these elements implies that the program is correct.
The difficulty lies in defining "treated the same" so that the formal version
of this argument is valid. Intersecting input classes with diverse origins
seems intuitively to approach "treated the same," but the finest partitions
can be inadequate, until the classes contain but a single element.

As an example of the intersection of input partitions, consider the
"triangle problem" of classifying triples of integers (A, B, C) representing
the sides into the textbook types such as "obtuse scalene." The outputs
specified form a finite set, and are thus a natural source of one input
division. Suppose the program for this problem has no loops, so that its path
equivalence classes are of finite index as well. Intersecting these
partitions yields input classes in which a certain classification is obtained
by traversing a fixed path. Is it possible to select a successful test yet
not have a correct program? Evidently so, since the path predicates can be
wrong, but accidently correct for selected tests. The intuitive satisfaction
we feel with a fine input division is perhaps a confusion between the fault-
finding and confidence roles of testing: should there be an error, attention
is directed to a narrow case.

Programs like the triangle-classification one, in which there is a simple
description of the required output, and the program contains no loops that
cannot be unwound, are not good examples on which to try testing methods,
because they yield perfectly to symbolic execution E43. It is only necessary
to prove that the path predicates in disjunction exhaust the input space, and
that each corresponds to the triangle type that is identified on that path.
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For example, a path predicate

A+ B> C /\ A <B <C

must be on a path where "obtuse scalene" is printed. These theorems are often
within the abilities of mechanical theorem provers.

The role of "treated the same" input classes is different when the classes
appear in program and specification. If specifications are not prescriptive
of how results are to be obtained, those inputs that should be treated the
same need not be in fact. For example, in computing the absolute value
function, it is common to specify the behavior differently for positive and
negative inputs. But the programer who writes

real procedure absval(x); real x; value x;
absval :: sqt(x^2)

is not observing the positive-negative distinction, and those classes have no
significance for this program. Again there has been a confusion with the
process of programming, and the fault-finding role of testing: a programmer
working from specifications is most likely to go wrong on their boundaries.
often by assuming an unwarranted "continuity." In fault-finding tests, those
boundaries are therefore significant, but they may be meaningless in
confidence testing.

Input partitions defined by program and those defined by specification can
be very similar, or very different, depending on how prescriptive the
specification is. When the partitions are very different (say because the
specification is declarative rather than operational), the boundaries in each
are reflected into the other in surprising ways. and this may be an advantage
in fault finding. When the partitions are similar, the boundaries seem to
have more significance in confidence testing. If the specification is
prescriptive, its boundaries are required to coincide with the program's, a
requirement that can be checked to aid in fault finding. None of these
arguments seem to bear on the question of whether specifications should be
similar to programs or not. The major practical points are that operational
specifications seem easier to write; but, it is also easier to make the same
mistake when translating intuition into an operational specification and
program, a situation no testing or proving method can detect. For testing
theory, it seems best to begin with the simplest case and take care with
definitions.

Testing based on input partitions for identical output does lead to
correctness, as the following trivial theorem shows. Define the same-output
equivalence relation for a program as

P= ((x. y) 1 inputs x and y lead to the same output).

Define the same-output equivalence relation for a specification as

S s ((x, y) I outputs on inputs x and y should be the same).

The input classes defined by the intersection of Pa and S" are those that
should have the same output, and do in fact. Initially. let the members of
these intersetion classes be called "treated the same."

Tbeorem: A test using one arbitrary element from eaoh treated-the-ame input
class is successful iff the program is correct.

Proof. (Correctness as a consequence of test success.) Let x be any input.
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which lies in treated-the-same class Y . Some member of Y has yielded the
correct result, by definition of a successful test. The point x is supposed
to give this result, and does in fact, by definition of Y . Hence the
program is correct for input x . (The other implication is trivial.)

Corollary: P2 and S2 are the same iff the program is correct.

Proof. The identity of P2 and S= and the success of an arbitrary test
from each class, are the same in the Theorem.

The evident deficiency in this result is that the treated-the-same classes
are not often of finite index; it is also important that there may be no way
to obtain a representative of each class. In problems like triangle
classification where the index is finite. choosing a point from a
specification class (like "equilateral") may be easy, and a successful test
execution shows that the intersection with the "equilateral" program class is
not empty. But it does not prove correctness to proceed in this. way. because
there is no effective way to select points in error classes (such as:
specified "equilateral" but the program prints "right isosceles")--indeed, the
Corollary states that these classes must be empty for correctness.

Thus in its simplest form. use of treated-the-same input classes is a
proving technique that makes no use of testing at all: once the error classes
have been shown to be empty, there is no need to try points in the others,
which must coincide.

There are natural input partitions for specifications and programs broader
than S and P . If these are more likely to be of finite index, or have
easier to find representatives, they are candidates for a testing method. For
example, suppose a first-order logic specification is of the form

1 (x) 0 O,(x.y)
(x) (xy)

iX) • 0n(X•Y)

where the I are disjoint input assertions, and the corresponding 0 are
output assertions for those inputs. Let I be the disjunction of all the Ii
* and

Ri(x) 2 Ii(x) /\ y Oi(x, Y)

for each Ii  and corresponding 0 . Then the relation

((U. v) 1 Ri(u) A Ri(v) for some i }

has input classes that intuitively follow the assertions of the specification.
(The inputs not in any such class are the ones where the specification fails
to constrain the result at all, because -1 holds; and, those for which the
specification asks the impossible, because there are no outputs as required.)
Similarly, let

Q (x) a on input x the program gets output y, and 0(x. y)ii
so

((u, v) Qi(u) /\ Qi(v) for &ame i I

has input classes for which the program's result satisfies one of the output
assertions. (These program classes are not necessarily disjoint.)
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Intersecting specification-defined and program-defined classes, we obtain
classes that are "treated the same" in a wider sense than that used above.
The same results hold (with the Corollary now stating that the intersection
partition must be the same as the specification one), and there -s the same
difficulty in test selection. The "error classes" are now those for which
some input assertion holds, but the program output fails to satisfy the output
assertion, and these are not easy to identify. If they can be shown to be
empty, the proof of correctness is complet. without recourse to tests.

A testing method might approximate a "treated the same" input division by
identifying as many of the partitions as possible, and placing a test in each.
Each success proves that the entire partition is treated correctly; the
approximation is that without knowledge of the extent of the untried classes,
one does not know much about the correctness of the program. The situation is
perhaps better than one in which undisciplined testing is done, because the
existence of the assertions does implicitly describe the untried classes. On
the whole, testing in this way tends to support Dijkstra's position, however.

The property that "treated the same" partitions lack might be called
decidable coverage.. A partition has this property if there is an algorithm to
decide if an arbitrary set of inputs includes a representative from each of
its classes. Partitions for which the Theorem above holds cannot have this
property, or they would solve the confidence testing problem. However,
program structure is a source of partitions that do have decidable coverage.
For example, the program relation

((x, y) 1 x and y cause the same branch to be taken)

defines an input partition whose covering representatives constitute "branch
coverage" of the program. If we stipulate that the program halts for each of
a given set of inputs, then the branch-coverage partition has decidable
coverage, by trial. However, it is not in general a refinement of any
partition for which the "treated the same" theorem holds. For example, the
inputs taking a certain branch may sometimes lead to results satisfying an
output predicate, and sometimes not.

Both specification and program may have partitions which fail to refine
"treated the same" classes. When program and specification partitions are
nearly the same, the classes formed by their intersection can be useful as a
basis for proving correctness. For example, in the partition analysis method
[151 the specification is procedural, and the partitions are based on path
equivalence. Symbolic-execution techniques can then be used to demonstrate
that within each class, inputs are treated correctly. (But they are not of
course "treated the same.") In this method tests seem to play no role except
as a check on the proofs and on the accuracy of subsequent transcription,
compilation, etc. On the other hand, when specification and program are in
different forms, intersecting partitions creates classes that are precise for
fault finding, but difficult to relate to correctness. In a system with
axiomatic specifications and conventional programs E16J, partitions based on
statement coverage and simple expression mutation have decidable coverage, but
were found in practice to be quite difficult to cover, giving the nose-rubbing
effect maximum play.

This analysis shows that the idea of "treated the same," while useful for
fault finding because of the way programs are written from Specifications, is
not so useful for a confidence testing theory. Correctness turns on empty
error partitions that are difficult to identify, and their identification is
not aided by successful tests on identifiable partitions. When partition-
class representatives can be identified, the sense of *treated the same" is
not strong enough to yield correctness, unless coupled with additional
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prescriptive oonditions that make program and specification nearly the same.
Apparently, methods utilizing partitions work because of subtle links between
specification and program, or because of non-methodical inspiration in
choosing the classes.

3. Testing to Strengtbened Specificationa

Where proving-based testing theory begins and ends with noneffective
collections of tests, where the hard work is human analysis and the program
test executions are almost incidental, an alternate view is exactly the
reverse. In this view, which arises from testing tools developed over the
past 20 years, the essential element of testing is its machine-intensive,
automatic character. In both the fault-finding and confidence-testing
situations, good tests are those an algorithm can generate (or at least
recognize, if they must be generated by hand). This necessarily, makes
"goodness" different from correctness. For example, the path-coverage of [2],
if defined as "good," can be easily monitored, but has no implication for
correctness.

The emphasis on tools allows distinctions to be made among fault-finding
methods. Not all test failures are the same. a testing tool that only
reports incorrect output is obviously inferior to one that makes a successful
attempt to localize the fault. (The situation has many parallels with syntax
error messages generated by compilers. For example, "MISSING 'END'" requires
study of a whole program, while "ILLEGAL SYMBOL" with a pointer to the scanned
position, Is easy to repair.) Even when a test succeeds, it is still possible
to fault it an inadequate, that is, to complain not about the program but the
test. All structural testing tools (of which the path analyzers [41 are the
most common) do this. Failings in the test data are thereby linked to parts
of the program, which may aid in discovering better data or in changing those
parts. (But see the discussion of the "nose-rubbing effect" in Section 1.)
Each structural criterion may be viewed as an attempt to sidestep an
unsolvable problem that makes a successful test worthless, and in this sense
structural coverage approximates correctness. For example, all-statements-
executed coverage closes off the loophole of unreachable code. It cannot be
decided if code is unreachable in general, and so long as code remains unused
it could contain faults. By creating an artificial test failure with a
pointer to unused code, a testing scheme cuts through this problem.
(Similarly the idea of "mutation" E5] closes the loophole of expressions that
are incorrect, but by chance correct for given tests E6].)

The unsolvable problem to which confidence testing is reduced is that of
program equivalence. Because the collection of programs computing one
function is not recognizable by algorithm, neither is it possible to recognize
a test as guaranteeing correctness. The problems of an algorithmic testing
theory thus arise from (1) flexible programming languages in which there exist
an unrecognizable set of programs with the same functional behavior, and (2)
the choice of functional specifications.

In many cases software engineering problems can be solved by imposing
useful structure on a chaotic situation. For example, the problems of
understanding "spaghetti code" can be overcome by arbitrarily banning the
GOTO; the unsolvability of detecting infessable control paths can be
circumvented by requiring tests to display full path coverage, etc. It might
therefore seem reasonable to look for a way of contrOlling the set of programs
with the same functional behavior. Unfortunately, program equivalence will be
undecidable in any language able to ,,Apute all rimitive recursive functions.
for which there Is an interpreter ar a way t johanioally compose programs

-A
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[93. It is unlikely that any of these properties can be eliminated from a
usable programming language.

The program-equivalence problem has an algorithmic solution when
"equivalence" is defined in a more restricted way than the functional. For
example, in a programming language capable of computing any subset of the
total recursive functions, the set of programs with the same computation
function is recursive [10). This suggests that by strengthening
specifications, it may be possible to establish by test that a program meets
them. Furthermore, algorithms that recognize computational equivalence do so
on the basis of a finite specification, which is itself restricted to the test
domain. This solves the problem of the specification oracle. Two examples
will show the character of strengthened specifications.

Consider assembly-language programs in the idealized model popularized by
Minsky as "register machines" [11]. (Any model of computation will serve for
the proof, but the details are easier if the "steps" of computations are
strictly finite, as in Turing machines, but not in a language allowing
arithmetic on arbitrary-size operands as a "step.") Any assembly-language
program can be reconstructed from a finite sample of its computations (up to
register names, and the relative placement of basic blocks of instructions),
if the program does not contain unreachable instructions. The necessary
inputs for this computation set can be imagined as obtained by executing the
program on an arbitrary input, and recording which instructions are used and
in which sequence. Because each instruction has a unique effect displayed in
the computation, this fixes part of the program. If there are no open
conditional branches, the single computation is sufficient. If a branch is
open, then an input must be found to take that branch, and thus fix the code
branched to. This process continues until the finite number of branches of
the program have all been closed, and'hence the whole fixed. The, e is no
algorithm for generating the set of computations because the problem of
identifying unreachable instructions is unsolvable. A branch might remain
forever unclosed, and no systematic exploration of the input space will help
to close it. However, presented with a purported set of computations that
fixes a program, the claim can be tested efficiently by executing the program,
and seeing if those computations result, and exhaust its instructions.

The finite collection of computation traces that fix any program without
unreachable instructions constitutes a strengthened specification of that
program. This specification involves a finite number of inputs, and provides
far more information about what the program must do on those inputs than would
an input-output specification. However, it fails to provide information about
what the program should do on other inputs, save by yielding the program for
experimentation. The character of the specification is that the program must
behave precisely on a finite set; elsewhere, its behavior is determined, but
not explicitly described. If two programs meet the specification they
necessarily have identical computations everywhere, because up to inessential
register names and instruction rearrangement, they are the same program.

A second kind of strengthened specification has the same peculiar
character. Take the specification to be a finite collection of input-output
pairs, plus a restriction on the form of the program that is to realize this
behavior. Let the program restriction guarantee that all programs halt for
all inputs. (For example, loops might be required to be a priori bounded, as
in LOOP [9].) Also let a program exist for each finite function (perhaps
using table lookup). The smallest program that realizes the given finite
sample of behavior is then well defined, and may be found by trial and error.
(Since all permitted programs terminate on all inputs, they can be tried in
order of size; the finite-function program will stop the search eventually.)

7e
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In this simplified form, it may seem unlikely that such specifications
would lead to the desired program, but more elaborate program restrictions can
produce surprising results, both in the speed with which the desired program
can be found, and its entire behavior. Summers's automatic programming system
[12] is particularly impressive in this regard, for example. It constructs
programs that use simple recursion in a natural way, so that if there is a
simple recursive solution, a remarkably small volume of data will cause it to
be generated.

Specifications by example and program restriction have the same character
as those by determining computation: for the test points given, the behavior
is precisely prescribed; but, for other points it is not even indicated. For
example, in Summers's system, the program induced is the "most natural" (in a
certain technical sense) generalization of the examples, but it is easy to
imagine being surprised by the behavior of this program on untried input. It
may be that the specification cannot be realized in the restricted program
form, or that the part of the algorithm that makes the realized program unique
(the "least" condition in the simple definition above) gets the wrong program.
In the latter case, there is no simple way to extend the supplied data to
force the generation of a different program, and of course it is an unsolvable
problem to distinguish insufficient data from an impossible specification.

Conditions that select one program among many possible ones are an
essential part of any automatic programming system, one more indication that
the program-equivalence problem lies at the heart of testing difficulties.
Arbitrary selection conditions make the relationship between testing aad
generating programs a little more complex than it seems. If one wants to
decide if a particular program meets a strengthened specification, there is
the obvious procedure of generating the program that does meet it, to compare
with the given one. But this procedure will fail to certify programs
equivalent to the generated one but not identical to it. When programs are
made by people and tested, it is unlikely that the strengthened-specification
form will be observed exactly, and such programs then cannot be certified by
test. The point is moot in practice, since if the automatic programming
algorithm is judged appropriate, there is no reason not to use it in the first
place, and avoid testing altogether. That people probably could not program
according to the automatic algorithm, points up how unsure we are of what such
a procedure is actually doing, however.

Weyuker has proposed a method of assessing test data adequacy 113) that is
proving-based, but also uses the idea of strengthened specifications. Given a
program, specification (input-output only), and a set of test data, the latter
is called inference adequate iff a program generated from the tests (say by
Summers's scheme): (a) is equivalent to the given program, and (b) meets the

given specification. (Her method is proving based because neither of these
equivalences can be established mechanically.) The success of this method
evidently depends on the ability of the inference scheme to generate programs
meeting the specifications. It is not true that it would be as well to prove
the given program to meet the specification, because the restricted form of
the generated program may make this proof easier.

Weyuker also suggests an effective approximation to inference adequacy as

follows: a program is inferred from the given data, and then tested using new
data unrelated to the set used for inference. On this new data it must agree
with both the original program and specification. In this process the

inferred program plays no role--the result is not different from selecting two
independent test sets. The peculiar form of the inferred program may make
test selection easier, and if the newly selected data fails, the intermediate
program may help in assigning the fault to original program or specification.
However, it seems useful to add to Weyuker's method the requirement that when

8
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the new data is added to the original, the same program be inferred. (Or, if
a proving-based method is acceptable, that the two inferred programs be
equivalent.)

The idea of comparing programs inferred from different sets of test data
leads to the following notion of test equivalence that can be made effective
in some practical cases: two test sets are equivalent if the programs
inferred from them are equivalent. The effectivenes3 of the idea depends on
the form of the inferred programs. For example, using Summers's program
generator, equivalence may be decidable using techniques invented by Samet
[14], which exploit the special form of the resulting programs. This idea of
equivalence is weaker than the one of adequacy that Weyuker wishes to define,
but it also suggests an idea for probabilistic analysis: if successive
expansions of a test yield only equivalent tests, is it not more likely that
the original was adequate? This notion can be used whenever test equivalence
has an effective definition but test adequacy does not.

4. Random Testing Theory

The nose-rubbing effect is a likely explanation for any success that involves
human beings working in conjunction with a testing tool. To otherwise explain
the success of tools requires a statistical theory. Tests are samples, drawn
from the space of all behaviors the software can exhibit; it should be

possible to estimate the software's characteristics from these samples, and to
further calculate the confidence to be placed in those estimates. There are
two difficulties: (1) the space of all behaviors is large, so it may be
impractical to amass a significant sample; and (2) test points must be
selected in a way that guarantees "independence" if their significance is to
accumulate as the number of points grows. Viewed in one way, both of these
problems have straightforward solutions; from another viewpoint the necessary
research work remains to be done.

A straightforward random testing theory considers distribution of tests
across the input space [17]. The essential assumption is that the program has
an "operational input space," from which points can be drawn at random, and
that success on any point selected is independent of that on any other point.
(The input space may be partitioned (181, but we have seen in Section 2 that
this idea only lends a misleading refinement.) If n points are selected.
and if the behavior is in error for k of them, then the software failure
rate will tend to k/n as n grows. If k z 0 , and one requires 1 - e
confidence that the probability of no errors ever appearing is p , then

log e
n-=------

log p

points are required 18]. For example, to attain 90% confidence that the
probability of no faults is .95 requires the success of 45 test points chosen
independently from the operational input space.

It is striking that the result of this simple theory is the same for all
programs, and that the number of test points required for great confidence is
so small. These counter-intuitive properties of the theory are consequences

of the assumption of independent test selection from an operational input
space, which evidently requires further analysis. In practice, the
operational input distribution is seldom known. So-called "random testing" in
which test points are chosen from a uniform input distribution Is altogether
different, because such points could fall in a low-density portion of the
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operational distribution, making their selection so unlikely that they should
not be counted. Nor is there any way to apply a "safety factor" and use the
easier idea of random testing. When most inputs are unlikely (a common case.
particularly where data is derived from some real-world sensor like a radar),
no safety factor F can insure that in nF inputs there are n that might
have been drawn from the operational distribution.

The intuitive reason that unlikely-in-practice test points are not useful
is that they may invoke rather different parts of the program code, creating
different internal program data states, than in actual practice. Furthermore,
thinking this way suggests why the simple theory gives results that seem so at
odds with experience: inputs chosen independently may be treated by the
program in exactly the same way. To try many such points will be effective
only in case one is assured that in use they will actually occur frequently.
Another way to say this is: high confidence for high probability of success
in operation is unrelated to correctness. A program containing faults may
indeed be reliable in practice, because the volume of input required to excite
them does not occur.

A theory of random testing that does not rely on the operational input
distribution must consider fault distribution over the text of the software in
place of test distribution over the input space. Furthermore, to analyze
"exercising" methods, the theory must account for the fact that executing
faulty code does not necessarily detect the fault. In the simplest theory,
faults occur across the source text according to some distribution, and the
number of distinct executions required to expose a fault also has a
probability distribution. "Distinct executions" means different computation
histories in which a given control point appears. The latter assumption is a
poor one, because a distribution fails to capture important differences in the
way control points are reached, and in the range of computations that include
them. Furthermore, many faults are of omission--it is unclear whether "point
of omission" is a well defined idea, or whether it makes sense to talk about
an omission point being reached in a computation. Nevertheless, a simple
theory of this kind might answer questions that resist analysis with logical
or algebraic methods.

A program being tested can be instrumented to record the occurrence of each
control point in distinct computation histories, yielding a list of the number
of times each control point has been encounteged during the test. If faults
are distributed over N control points {c i of a program, and the number

of distinct executions to expose a fault is a distribution with mean R , then
the probability pi that an error arise in the test as a result of a fault at
control point c which has been encountered h times can be calculated as
the product of tA. probability of a fault, and tAe sum of the detection
distribution up to h4 . The probability p that the test expose at least
one error is the sum If Pi over all N control points, and 1 - pE is the
probability that no errors appear.

The formula for the probability that no errors appear in a test behaves
properly when all of the exercise frequencies are much larger than the mean R
required to detect a fault, and when they are much smaller than R or 0. The
former case approaches exhaustive testing, and the probability of no errors
should be 0; the latter case represents testing with almost no code coverage,
and the chance that no errors will appear is 1. In actual testing, it is
observed that a test is a mixture of these cases: some statements are well
exercised, while others cannot be. Whether it is better to increase already
good coverage, or try to improve poor coverage, depends on the particular
distributions for fault and detection probabilities.

In testing software for confidence, no errors are observed. Any such test
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might be viewed as a sample, and a number of samples might increase confidence
that the no-error probability calculated is correct. However, since each
sample will yield a different no-error probability, and the independence of
samples is doubtful, establishing confidence limits seems a mucW more
difficult problem. Without such limits, however, we cannot hope to explain
facts such as software that passes acceptance tests, yet contains residual
faults.

Because execution coverage plays an explicit role in this theory, it can be
used to analyze testing methods involving coverage metrics--the variants of

path testing, mutation testing, etc. For example, consider a test that
achieves statement coverage and one that in addition attains branch coverage.
It is not unreasonable to conjecture that this improvement is accomplished by
adding a nearly optimum set of tests, in which case the changes in the h can
be estimated, and the methods directly compared.

To increase the probability that errors will show up in a test, It may be
necessary to force detailed exploration of narrow subsets of the input space,
because only those inputs cause execution histories that reach important code
areas. This suggests an input distribution induced by the code: that
distribution from which a randomly-selected input is equally likely to cause
execution of any program control point. The extent to which this reflected
distribution is nonuniform on the input space is a measure of the program's
semantic complexity, and of the extent to which input-space random testing
will be misleading. The deviation from uniformity can be experimentally
determined by dividing the program and the input space into intervals,
selecting points at random from the latter, and noting the penetration into
the former. This input distribution, unlike the operational one, is connected
to the program's correctness, in that continued test success on inputs
selected from it reduces the likelihood that faults remain.

5. Sumary

Testing theory has explanation as its primary goal. Its ideas come from
program proving, from practical software tools, and from probability. Only
the latter seems promising as a way of analyzing test methods. Results from
proving theory substitute noneffective ideas that incorporate tests for the
noneffective notion of a correctness proof. When practical approximations to
these ideas are considered, the argument that the approximation is useful is
only an analogy. Similarly, although modified notions of correctness can be
automatically established, the relationship of the established idea to the
original is given by a weak plausibility argument. Yet in practice many of
the testing methods we use do seem to work very well. Part of this can be
explained by the nose-rubbing effect, but part requires analysis that can only
be probabilistic in nature. A probabilistic theory must take into account the
structure of the code being tested as well as explore the input space [19].
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